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Computer simulations of isolated conductors in electrostatic equilibrium
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A computer simulation model is introduced to study the characteristics of isolated conductors in electrostatic
equilibrium. Drawing an analogy between electrons and how they move to the surface of isolated conductors,
we randomly initialize a large number of particles inside a small region at the center of simulated conductors
and advance them according to their forces of repulsion. By use of optimized numerical techniques of the
finite-size particle method associated with Poisson’s equation, the particles are quickly advanced using a fast
Fourier transform and their charge is efficiently shared using the clouds-in-cells method. The particle popula-
tions in the simulations range from 50X 10 to 1 X 10° that move in various computation domains equal to
128 X 128, 256 X 256, and 512 X 512 grids. When the particles come to an electrostatic equilibrium, they lie on
the boundaries of the simulated conductors, from which the equilibrium properties are obtained. Consistent
with the theory of electrostatics and charged conductors, we found that the particles move in response to the
conductor geometry in such a way that the electrostatic energy is minimized. Good approximation results for

the equilibrium properties were obtained using the proposed computer simulation model.
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I. INTRODUCTION

The understanding of electrostatic interactions and prop-
erties between charged surfaces has been a subject of con-
tinuous interest in the modeling of electrochemical interfaces
and study of domain structures in nanoferroelectrics [1-3].
There has also been much interest in the study of conductiv-
ity with electron and ion holes in phase space [4,5] and elec-
trostatic equilibrium of electron clouds confined on magnetic
surfaces [6,7]. In this paper, an attempt is made to investigate
the electrostatic equilibrium properties of isolated conductors
through computer simulations. The electrostatic system is
governed by Poisson’s equation, which is solved using opti-
mized numerical techniques. In our approach, conductor sur-
faces are modeled as potential wells that confine simulated
electrons to reach equilibrium. This approach avoids the
mathematical difficulty of handling complicated boundary
conditions at the interface and easily treats complex conduc-
tor shapes. Although characteristics of electrostatic equilib-
rium in conductors are studied, the methods developed ap-
pear promising for applications to other materials exhibiting
the same phenomena and to sophisticated computer simula-
tions based upon electrostatics.

Electrostatics is the study of the phenomena recognized
by the presence of electrical charges and the interaction of
these charges, either stationary or moving. This interaction is
solely generated by reason of the charges and their positions
and not by reason of their motion. There exist, in nature, two
types of charge: positive and negative. The force between
them is such that like charges repel and opposite charges
attract as described by Coulomb’s law. Electrostatic forces
are generally weak compared to gravitational effects. How-
ever, for small charged particles (1-100 wm), electrostatic
forces dominate the behavior of particles. This has led to a
wide variety of studies ranging from molecular and cellular
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behaviors [8,9] to physical applications [10,11]. Typical elec-
trostatic applications include the design of deformable de-
vices [12,13], the development of coating techniques [10], as
well as the production of motors (generators), lighting rods,
and photodiodes [14] using dielectrics, semiconductors, and
conductors.

Conductors are materials, for example metals, which al-
low electrons to move relatively freely from atom to atom.
Charged conductors that have reached electrostatic equilib-
rium, which means that there is no net flow of electric charge
or electric current, share a variety of unique characteristics
[15,16] as summarized in Table 1. A particular characteristic
is that electric charge varies in response to the geometry of
the conductor. Electric fields and the corresponding charge
densities at sharp edges and corners have been studied by
Jackson [17]. An approximate relationship governing the sur-

TABLE I. Essential characteristics of isolated charged conduc-
tors in electrostatic equilibrium, which means that there is no net
flow of electric charge or electric current.

Characteristics of isolated conductors in electrostatic equilibrium

(1) The electric field anywhere inside the
conductor is zero.

(2) Any net charge on the conductor resides
entirely on its surface.

(3) The electric field just outside the conductor
surface is perpendicular to the surface

and has a magnitude proportional to the local
surface charge density at that point.
(4) On an irregularly shaped conductor, the surface
charge density and hence

the electric field just outside is greatest where
the curvature is largest.
(5) Every point on the surface of the conductor is
at the same potential, i.e.,

the surface is an equipotential.
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face charge density with distance from the corner formed by
two conducting planes has been derived for different opening
angles. To understand the electrostatic interactions between
charged surfaces, Naji and Podgornik [2] have developed a
general formalism to investigate the effect of quenched fixed
charge disorder in a one-component Coulomb fluid. With
recent advances in physics and scientific technologies, more
rigorous investigation of the behavior of electrostatic sys-
tems and devices has become possible. One powerful tech-
nique is through the use of computer modeling.

Computer simulations of electrostatic systems in equilib-
rium associated with analytical mathematical techniques
have been widely used to determine the behavior consistent
with well-established physical laws. There has been persis-
tent interest in the applications of simulating charged con-
ductors in electrostatic equilibrium in computational intelli-
gence and statistical physics. Wu and Levine [18] proposed
the use of simulating electrical charge distribution to object
segmentation into parts. In their approach, an object to be
segmented is viewed as a charged perfect conductor. Based
upon the physical properties, electrical charge on the surface
of an isolated conductor tends to accumulate at a sharp con-
vexity and vanish at a sharp concavity. By tracing local
charge density minima that are treated as object part bound-
aries, one can decompose the object into parts at those
boundary points.

A deformable model that uses charged particles moving in
an electrostatic field was proposed for shape recovery [19].
Positive free particles are attracted by fixed negative charges
that correspond to each pixel of the edge map of an input
image. Each free particle with equal charge moves under the
influence of an internal Coulombic force, an external Lorentz
force, and a damping force. The contours of object bound-
aries of interest are obtained by tracing the particle positions
after an equilibrium is achieved. Recently, Chang ef al. [20]
developed a charged fluid model that uses a computer simu-
lation of charged particles for image segmentation. Charged
particles with like sign are distributed within a propagating
interface that is treated as the surface of an isolated conduc-
tor for the guidance of the deformable model. The deform-
able contour corresponding to the conductor surface is ad-
vanced toward the object boundaries of interest based upon
the electric fields after an electrostatic equilibrium is
achieved for each iteration.

While the phenomena of charged conductors in electro-
static equilibrium have been extensively studied both experi-
mentally and numerically, computer simulations of the intrin-
sic properties have not been explicitly explored and studied.
In addition, numerical simulations of electrostatic systems
are valuable to examine the predictions and understand the
phenomena [21,2]. This paper aims to investigate the unique
characteristics of isolated charged conductors in electrostatic
equilibrium (see Table I) through modern computer simula-
tion techniques. We propose the use of particle simulation
techniques of plasmas to numerically calculate the electric
field and potential distributions using a large number of par-
ticles (50X 103—1 X 10°). In our approach, the charged par-
ticles are randomly placed inside a small region at the center
of isolated conductors initially. This approximately simulates
the corona charging in that a high voltage is applied to a
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sharp point [10]. However, we will show that the simulation
results using the proposed method are not sensitive to the
initial particle placement. The particles are continuously ad-
vanced in simulated conductors according to their forces of
repulsion until a specified electrostatic equilibrium condition
is achieved. Electrostatic equilibrium characteristics are in-
vestigated based upon various simulation parameters includ-
ing particle number, conductor geometry, computation di-
mension, and equilibrium condition.

The remainder of this paper is organized as follows. In
Sec. II, we describe the electrostatic model derived from
plasma physics for simulating charged particles moving in
isolated conductors. Optimized numerical techniques based
upon the finite-size particle method associated with Poisson’s
equation are introduced to quickly advance the particles. The
electric potential is numerically solved using the fast Fourier
transform (FFT) and the particle charge is efficiently shared
into grid points using the clouds-in-cells method. In Sec. III,
we present the simulation results and discuss the proposed
model based upon various combinations of parameters in-
cluding particle number, conductor geometry, time interval,
computation dimension, and equilibrium condition. In Sec.
IV, we summarize the results in terms of electrostatic equi-
librium characteristics and the contributions of the current
work.

II. ELECTROSTATIC MODEL
A. Simulation design

As described in Sec. I, conductors are materials that per-
mit electrons to flow freely from atom to atom and molecule
to molecule. An object made of a conducting material will
permit charge to be transferred across the entire surface of
the object. If a number of charges are transferred to the ob-
ject at a given location, these charges are quickly distributed
across the entire surface of the object in such a way that the
total amount of repulsive forces within the conductor is mini-
mized. The charges redistribute on the conductor surface and
reach the electrostatic equilibrium state within a finite time
that depends on the conductivity of the material.

Ln

Lm
(a) (b)

FIG. 1. (Color online) Schematic illustration of the simulation
of isolated conductors in electrostatic equilibrium. (a) Randomly
initialize a large number of charged particles inside the (red) circle
with radius equal to eight grids at the center. (b) The simulated
particles lie on the (blue) conductor surface and reach the electro-
static equilibrium distribution.
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A thorough physical model through computer simulations
to study the electrostatic equilibrium properties of isolated
conductors would be sophisticated and difficult due to intrac-
tabilities in incorporating microscopic phenomena. For sim-
plicity, a two-dimensional electrostatic system is considered
that approximates realistic phenomena from the macroscopic
perspective. This is illustrated in Fig. 1 where the (blue)
circle is treated as the cross section of an infinitely long
cylinder conductor. A large number of charged particles (50
X 103—1 X 10°) that simulate electrons are randomly initial-
ized in a circle with radius equal to eight grids at the center
as shown in Fig. 1(a). Due to repulsive forces, the particles
advance outward and redistribute charges in such a way that
the electrostatic energy in the system is minimized. The par-
ticles finally reside on the boundary of the circle, which is
treated as the conductor surface when electrostatic equilib-
rium is achieved as depicted in Fig. 1(b). In the next section,
we describe mathematical models and numerical techniques
derived from plasma physics to achieve the simulation.
Herein, we have used (x,y) to represent Cartesian coordi-
nates in the spatial domain, (m,n) to represent discrete coor-
dinates in the spatial domain, and (u,v) to represent the cor-
responding discrete coordinates in the Fourier domain
throughout this paper.

B. Coulomb’s law

Systems of charged particles have been broadly studied in
the plasma physics community for decades. Computer simu-
lation and modeling methods are powerful tools to investi-
gate the behavior of such systems [22,23]. Among the most
successful models for computer simulation of electrostatic
plasma are particle models. In an electrostatic system, the
force on a particle i due to all other particles is given by
Coulomb’s law:

N
q (r
Fi=qi2 Etj 2 |2 s (1)
= i
i#j i#j

where ¢ is the charge of particle i, N is the total number of
particles, and E;; is the electric field from particle j at posi-
tion r;to partlcle i at position r;. However, if one attempts to
proceed in a straightforward manner to directly compute the
electric force on every particle using Eq. (1) for a large num-
ber of particles, one soon realizes the total impracticality of
such an approach. The ensemble number of the arithmetic
operations required to compute the electric force will ap-
proximately be of the order of 10N? [22]. For a calculation
involving 5 X 10* to 1Xx 10° particles, in our case, the total
number of operations would be about 10'°—10'3, With an N?
scaling for the run time over a large amount of time steps,
the simulation would be hopeless.

Another important consideration of electrostatic models
for the simulation of conductors in equilibrium is the colli-
sion between particles. The electric force in Eq. (1) has the
shape as illustrated in Fig. 2(a) that is getting larger when the
distance approaches zero. Two particles passing through each
other will feel large and rapidly varying forces that gives rise
to collisional effects. On the other hand, the slow falloff of
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FIG. 2. Electric forces in two dimensions and the Gaussian
shape function. (a) Schematic illustration of the electric force be-
tween two point charges using Coulomb’s law (the solid curve) and
that modified by the FSP method (the dashed curve). (b) Schematic
illustration of the Gaussian shape factor used to modify the point
charge distribution.

the force with distance indicates that many particles can in-
teract simultaneously, which gives rise to the collective be-
havior. One would like to reduce these collisional effects to
some extent so that the model represents a portion of real
electrons moving in conductors. If the Coulombic force be-
tween particles is replaced by one that is Coulombic at large
distances but decreases to zero for short distances [the
dashed curve in Fig. 2(a)], we can retain the collective be-
havior while reducing the collision rate. One answer to
smoothing the interaction at short distances is to modify the
particle structure with the use of the finite-size particle (FSP)
method [22,24].

C. Particle shape factor

The FSP method enables us both to speed up the electric
force calculation and to substantially reduce the collisional
effects between particles while retaining the long-distance
behavior. By introducing a shape function to particles, the
FSP enables new particles, which have a spread-out charge
distribution, to interact simultaneously due to the Coulombic
force at large distances but to cross each other easily due to
the reduced force when they are close. The charge density of
an FSP (or cloud) whose center is at the origin is now
changed from ¢&(r) to ¢S(r), where ¢ is the particle charge
and S(r) is the shape factor used to modify the structure of
the particle. The shape factor is not required to be isotropic
or symmetric but it usually is [24]. In this study, we assume
that the shape function is real and isotropic [see Fig. 2(b)] as
given in the following equation [22]:
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S(lr=r))=S(r) = by exp(— E)
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where S(r) is the Gaussian shape factor in terms of distance
r and its integration over the entire space is normalized to
unity through the factor 1/2r, i.e., [[S dxdy=1.

Rather than calculating the electric force using Coulomb’s
law in Eq. (1), we can now compute it in terms of the electric
field. The electric force F; of a point charge ¢, at position r;
is related to the given electric field E at the corresponding
position

F;=qKE(r), (3)

where the electric field E can be computed in terms of a
scalar potential @,

E(r)=- V®(r), (4)

and the electric potential can be computed from Poisson’s
equation

V2D(r) = — 4mp(r), (5)

where p(r) is the charge density. For finite-size particles, the
force in Eq. (3) must be modified by adding up the forces on
all charge elements that constitute a particle, i.e.,

Fi=CIiJS(|1'—ri|)E(I')dA~ (6)

D. Charge density approximation

Once the particles are of finite size, usually equal to the
size of a grid spacing, we approximate the charge distribu-
tion for which the charges locate only on several grid points.
This is accomplished by using the clouds-in-cells (CIC)
method [25] to interpolate the charge to the four closest grid
points with respect to the position of each particle. The solid
lines in Fig. 3 depict the main computation grid with grid
spacings Ax and Ay. The dashed lines depict a grid whose
grid points lie at the centers of the squares of the main grid.
Consider a particle whose center is at point (x;,y;) with
charge ¢; and the same size as a grid cell, AxX Ay. The
charge density assigned to grid points is obtained by the
area-weighting scheme. The intersection of the square with
the dashed lines divides it into four areas as shown in Fig.
3(a). The charge g; is effectively divided into four smaller
charges Q stored in a charge array using the following equa-
tions:

[Ax = (x; = m)][Ay = (y; = n)]

Q(m,n) =g, AxAy
_ (Ax—dx)(Ay - dy)
=dqi AxAy > (73.)
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FIG. 3. (Color online) Schematic illustration of the CIC method
for charge sharing. (a) Area weighting assignment of charge density
to the grid points. (b) One (red) particle with charge ¢; located at
(x;,y;) is divided into four (blue) charges at the grid points based
upon (a).

(=mlAy= (=] _ dx(by—dy)

l.n)=a:
Gl = AxAy T AxAy
(7b)
o( +1)= [Ax — (x;—m)](y; —n) B (Ax — dx)dy
e AxAy BT
(7c)
(x; =m)(y;—n) dx dy
ln+)=a, _
Om+1,n+1)=g; Axhy q’AxAy’ (7d)

where dx=x;—m and dy=y;—n are the distances of the par-
ticle from the lower left hand grid location (m,n) on the x
and y axes, respectively.

Once the particles have been replaced by a set of finite-
size charges on the grid points, we can replace the sum over
particles by a sum over grid points. Since the charge density
of the system is the sum of N particles modified by the shape
function in Eq. (2), the charge density can be approximated
using the interpolated charge on the lattice Q,

L, L

N
p(x.y) =2 q;S(r—r) = 2 2 0(m,n)S[|r - r(m,n)
i=1

m=1 n=1

n

1.
(8)

where L,, and L, are the lengths of grid points along the m
and n axes, respectively. By using this approximation, the
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charge density is distributed on a uniformly spaced grid.
Having charges distributed on a regular grid point enables
efficient numerical solutions of Poisson’s equation by means
of the powerful FFT algorithm [26].

E. Electric potential computation through Poisson’s equation

Assuming that the charge density p(x,y) in Eq. (8) repre-
sents excess electrons in simulated conductors, the electric
potential ®(x,y) is related to p(x,y) through Poisson’s equa-
tion:
r924>(x Y, PO(xy)

&yz

V2D (x,y) = =—4mp(xy). (9)
Further assuming that the electrostatic system is doubly pe-
riodic such that @ and its normal derivative are periodic at
the boundaries,

‘I’(O,Y) = (I)(thy)v (103)
D(x,0) =D(x,L,), (10b)
d(0,y) _dP(Lyy) (100)
x ox ’
0P (x,0) _ oPb(x,L,) (10d)
dy ay

then taking the Fourier integral of Eq. (9) and integrating by
parts gives

W v? 0 ifu=0andv=0,
m =+ 5 | Puy . (11)
L? L

o P, otherwise.

The right-hand side of Eq. (11) is consistently zero when the
evaluated point on the left-hand side is at the origin (i.e.,
poo=0) for a periodic system.

Now, substituting Eq. (2) into Eq. (8) and taking the Fou-
rier transform, the charge density in the Fourier domain can
be expressed as

2 2
0= 0o exp[—Zﬂ'Z(u—+v—)]. (12)
L L

X

Herein, we have used the approximation

JLA ( 27Tiux> { l( )2}(1
. exp L exp 2x m X

27'rium) ( 2772142) (13)
3 exp| — 2

X X

~ \’/ZT exp(—

and used the definition of the discrete Fourier transform
(DFT) for the charge Q,

L,~1L,-1

S S otmmess| 2 eso

an n=0

1

- 2ivn
Ouw .

L,
(14)

Substituting Eq. (12) into Eq. (11) and taking the inverse
Fourier transform gives the solution of the periodic potential
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FIG. 4. Flow chart of the procedures for electric force compu-
tation. Using the CIC method, the continuous charge density func-
tion p(x,y) is first interpolated to the nearest four grid points to
obtain the discrete charge function Q(m,n), which is further trans-
ferred to the Fourier domain using the FFT algorithm. The discrete
electric potential ®(m,n) is then computed by taking the inverse
FFT (IFFT) of @, ,. The discrete electric field E(m,n) is numeri-
cally computed using the central difference approximation (CDA).
Simpson’s rule (SR) is then used to compute the discrete electric
force F(m,n). Finally, the continuous electric force F(x,y) is com-
puted by using the four-point linear interpolation (FLI) of F(m,n).

D(x,y) = 2 2 Que 2712( 2+”2)
X, — 5 5 -
Ve e 2 w(uz/L2+v2/L2) L} L
2771 2770
Xexp( 7chc)exp( 717'ley)’ (15)

y

where the prime represents that u=v=0 is excluded from the
sum.

Obviously the solution of Poisson’s equation directly us-
ing Eq. (15) is impractical due to the infinite sum. If the
potential in Eq. (15) is evaluated only on grid points and
interpolated between them, we can facilitate the computation
and obtain the discrete potential ®(m,n),

L,/2-1 L,2-1

2
d(m,n)= 2, ’% exp{—Zﬂ'z(Z—z

2,72, 2
w=L,/2 v=—L,j2 TU/ Ly, +v7/L, m

N v_2 (27Tium> <2m'vn> (16)
2 exp L exp 3 .

n n

The above equation can be rewritten by changing the indices
u and v as

1L 0 2
®(m,n) = 2 2 %exp{—Zﬂ'z(L—z

2,72
u=0 v=0 W(u/l‘m

vz) <2m'um> <27Tivn) (17)
+ — .
Li exp L exp L
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FIG. 5. (Color online) Schematic illustration of the surface con-
straint force for confining the particles using a segment of curved
boundaries. (a) The potential well is created by respectively assign-
ing 1., say 125, and [, say 225, to the conductor and background
for confining the particles inside the conductor. There are salient V/
values, which are treated as the surface constraint forces, only at
boundaries. (b) One (red) particle reaches the simulated surface and
encounters the surface constraint force (the dashed arrow) which is
approximately in the surface normal direction. The electric force
(the solid arrow) is approximately canceled out in the normal direc-
tion. The resultant force is approximately parallel to the surface that
drives the particle moving along the surface toward equilibrium. (c)
The electric and surface forces are numerically calculated using the
four-point linear interpolation from the neighbor points. The bound-
ary points are indicated as the (blue) hollow circles.

Then the DFT pair in Egs. (14) and (17) can be rapidly
computed via the FFT algorithm [26] provided that L,,=2°
and L,=2', where s and ¢ are positive integers.

F. Electric force computation and particle advancement

Once the discrete potential ®(m,n) in Eq. (17) is ob-
tained, the electric field E(m,n) is numerically calculated
using the central difference approximation of Eq. (4),

O(m+1,n) - d(m—1,n)
2 9

E,(m,n) =~ (18a)

d(mn+1)-d(m,n-1)
2 9

E,(m,n) =— (18b)

where E,, and E, are the components of the electric field in
the m and n directions, respectively. The electric force that

each particle experiences on a grid point is computed based
upon Eq. (6) as

F(m,n) :qfOc f‘” S[|r = r(m,n)|JE(r)dy dx.  (19)

Since the Gaussian shape factor decays exponentially away
from its center, the above integral can be approximated as

1 rl
qf J S(x,y)E(x + m,y + n)dy dx
174

Tl ’
f f S(x,y)dy dx
—1J4

where the denominator, equal to 0.466 065, is used to renor-
malize the force. Recalling that the electric field is evaluated

F(m,n) =

(20)
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only on grid points, the numerator in Eq. (20) is approxi-
mated using Simpson’s rule [27],

f?wazgmw+wmwﬂ@m Q1)

where x;=xy+/ and x,=x(+2h. The electric force on particle
i can then be computed by linearly interpolating the discrete
force F(m,n) in Eq. (20) to the particle position at r;. Figure
4 depicts the flow chart of the overall electric force compu-
tation used in the simulation system.

The equations of motion for particle i are given as

dv; Fr;t

av; _ Filr; )’ (22)
dt mi

dr;

—l= »[’ 23
” Vi) (23)

where v; is the velocity on particle i, F,(r;,?) is the average
force on particle i given by Eq. (6), and m; is the particle
mass. We advance the particle in terms of v; and r; using the
standard leapfrog method [22]. To this end Egs. (22) and (23)
are respectively approximated by the following time-
centered difference equations:

A+172

Vf»‘“ = Vl-x + ——A¢, (24)
m;

EUCEN S Y 25)

where \ refers to the time step with interval Az. The velocity
v; is updated at integer time steps and the position r; at
half-integer time steps. Note that the force F; is given at the
half-integer time steps because it is derived from the electric
field, which depends only on the particle positions.

G. Surface constraint force

The remaining challenge for the simulation of conductors
in electrostatic equilibrium is to model the conductor surface
to constrain particles (electrons) moving in simulated con-
ductors. For the sake of simplicity, we present here an inten-
sity gradient approach to model the isolated conductor sur-
face as a potential well for confining the particles. Two
different values of intensity / are assigned to each grid, as

I. if (m,n) is in the conductor,
I(m,n) = (26)

I, if (m,n) is in the background,

where . and I, are, respectively, the intensity values in the
conductor and background as shown in Fig. 5(a). The values
of I. and I, are arbitrary numbers with /. <<I), for creating the
potential well. The map of intensity gradients, where there is
a relatively high value at the simulated conductor surface, is
incorporated into the electrostatic system to constrain the
motion of the particles. In response to the constraint force at
the simulated boundary, the resultant force I:‘,- used to ad-
vance the particles is the vector sum of the electric force in
Eq. (6) and the gradient force given as
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FIG. 6. (Color online) Plots of the charge difference ratio
AQ o/ Qo With respect to iteration for different time intervals equal
to 0.0001-0.0005. The experiments were executed using 50 X 103
particles in a circular cross section conductor in a 256 X256 com-
putation grid.

]T:‘,»=Fi—aV1 (27)

where « is a weight for adjusting the gradient force VI.
Although this method sounds simple and straightforward,
practical computational limitations require the use of more
sophisticated techniques that increase the difficulties of
simulation for any appreciable length of time. Now through-
out the simulation process there are two different forces for
each particle: the electric force F; and the surface constraint
force @ V1. Before hitting the simulated surface, the particles
are advanced mainly according to F; since VI=0. However,
there are salient VI values at simulated surfaces that are able
to cancel out F; in the surface normal direction and to change
the motion of the particles toward equilibrium, as illustrated
in Fig. 5. Further applying Gauss’s law to evaluate the force
equilibrium condition between the electric force and the gra-
dient force, under which the particles are confined inside the
simulated conductor, we obtain the condition for « as

10000+ Py
] -
< 10004
° 1
§ -
£ 100, =i 5123512
{1 3 =6 256x256
-4 128x128
10 T T J
1% 0.1% 0.01%

Gamma

FIG. 7. (Color online) Iteration number analyses for achieving
electrostatic equilibrium based upon circular cross section conduc-
tors for different values of y and sizes of computation grids.
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2
o= 4Nq
D|VI

. (28)

where D is the diameter of the cross section of simulated
conductors (see Fig. 1) and |VI| is the modulus of intensity
gradients. Herein, we have assumed that each particle has the
same charge g. With appropriate values of « in Eq. (28) the
simulated surface constraint forces are capable of confining
the particles moving along the surface toward electrostatic
equilibrium.

H. Electrostatic equilibrium

To facilitate the management of the particle motion for
reaching electrostatic equilibrium, we assume the initial ve-
locity of the particles is zero and further limit the velocity so
that the particles have zero momentum by setting V?=0 in
Eq. (24) whenever they are advanced at each iteration. In
other words, the particles are advanced from a static state
with zero velocity for each time step. This enables us to
dramatically decrease the influence of initial particle place-
ments and to easily handle the particle motion reaching con-
ductor surfaces. Substituting Eq. (27) into Eq. (24), we ob-
tain a modified velocity equation as

ol F;\+1/2 F[).\+1/2— aVI
A\ = A[:

1
m;

At. (29)

m;

Both forces of F; and a'VI on each particle are calculated
from the neighbor points using the four-point linear interpo-
lation method. Figure 5(c) illustrates the situation of comput-
ing the resultant force for a particle at curved boundaries of
the simulated surfaces. Consequently, using Eq. (29) for up-
dating the velocity and Eq. (25) for the position the particles
are continuously advanced until electrostatic equilibrium is
achieved.

Electrostatic equilibrium is defined as an ideal state of
zero net flow of electric charge (see Table I) that is extremely
difficult for computer simulation models to achieve. In order
for the simulation to converge, we define the condition of

2048
1024
® 512
E
o 256 >
E 128 —a 5124512
== 256256
64 X e 128x128
32 Y r r
50k 500k 1M

Particle number

FIG. 8. (Color online) Computation time (ms) per iteration for
achieving electrostatic equilibrium with y=0.01% for different par-
ticle numbers and computation grids. The computation time in-
volved the repaint of particle positions for display that was executed
on a modern computer with an Intel CPU 2.33 GHz running a
Linux operating system.
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TABLE II. Parameters for computer simulations of isolated con-
ductors in electrostatic equilibrium.

Parameter Setting

0.00054858 u
Particle charge le
50 000-1 000 000

128 X 128-512X 512 grid
1%, 0.1%, 0.01%
0.0001-0.0005 ms

Circle, ellipse, square, triangle

Particle mass

Particle number
Simulation dimension
Equilibrium condition
Time interval
Conductor geometry

electrostatic equilibrium such that a small amount of charge
flow is still permitted. This is the case when the following
inequality is satisfied:

L771 Ln
> > O 2(m,n) — 0¥ (m,n) A
m=1 n=1 Oiot -
= <y (30)
QtO[

N
2 qi
i=1

where Q,=Ngq is the total charge of the overall system,
AQ, is the net charge flowing in total for each iteration, and
v determines the degree of electrostatic equilibrium. The
smaller the value of 7y the better the degree of equilibrium
that can be obtained. Note that the system conserves charge
throughout the simulation process, i.e., O is the same at
each time step.

III. SIMULATION RESULTS AND DISCUSSION

The experiments were executed using a wide variety of
parameters including particle number N, simulation dimen-
sion L,, X L,, equilibrium condition v, time interval A¢, and
conductor geometry as summarized in Table II. Note that the
units of time and dimension play a slight role in the simula-
tion results. A reasonable assumption for time is millisec-
onds. For simulating nano- and human-scale devices a grid
spacing equal to 0.1 nm and 5 mm is appropriate, depending
on the situation. The simulation code was developed and
written in JAVA for its vigorous portability and flexibility
across different platforms.

A. Analyses of computation time

We first investigate the convergence speed and computa-
tion time with respect to the setting of time interval Az based
upon the charge difference ratio AQ,./ Q.. Figure 6 shows
the profiles of the charge difference ratio within 10 000 itera-
tions using 50X 10° particles with different time intervals
equal to 0.0001, 0.0002, 0.0003, 0.0004, and 0.0005 ms for a
circular cross section conductor in a 256 X 256 computation
domain. It shows that using a larger time interval setting
gave a relatively higher AQ,/ O\, value before the particles
reached the simulated conductor surface. This is because the
particles advanced a longer distance using a larger time in-
terval and the differences of the charge distributions between
two consecutive steps are larger. After the majority of the

PHYSICAL REVIEW E 78, 056704 (2008)

particles reached the surface boundaries, the particles started
to redistribute themselves toward an equilibrium state, and
the convergence speed was changed due to the interaction of
the surface constraint forces. As shown in Fig. 6, using a
large time interval of Ar=0.0005 ms accelerated the conver-
gence speed in that the required iteration number for achiev-
ing y=0.01% was approximately 4830. However, too large
time interval values may lead to unstable simulation without
convergence. On the other hand, using a small value of Ar
=0.0001 ms was safe but the convergence speed was slow.
This is illustrated in Fig. 6: the state of y=0.01% was not
achieved when the iteration number reached 10 000. There-
fore, there is a trade-off between speed and stability. Addi-
tional experiments were executed for estimating optimal time
interval values using different particle numbers. We found
that using a time interval equal to 0.0005 ms for 50X 103
particles, 0.0002 for 500 X 103, and 0.0001 for 1 X 10° was
appropriate in terms of efficacy and accuracy.

In Fig. 7, we illustrate the required iteration numbers
for achieving various electrostatic equilibrium states with
respect to vy for circular cross section conductors on 128
X 128, 256 X 256, and 512 X 512 computation grids. It is es-
timated that the iteration number was proportional to the size
of the computation domain and inversely proportional to the
value of the equilibrium condition . For the same value of
v=0.01%, the iteration numbers were approximately 1170
and 9160 for 128X 128 and 512X 512 computation grids,
respectively. The iteration number required to achieve accu-
rate electrostatic equilibrium, say y=0.01%, was much
larger as compared to that for less accurate equilibrium, say
v=1%. For example, the iteration numbers based upon a
256 X256 computation grid were approximately 180, 560,
and 3700 for y=1%, 0.1%, and 0.01%, respectively. This
indicates that a much longer computation time is required for
obtaining accurate simulation results.

We present, in Fig. 8, the averaged time per iteration for
achieving electrostatic equilibrium with y=0.01% using
various scenarios. The calculation of computation time in-
cluded the repaint of particle positions for display that was
executed on a modern computer with an Intel CPU 2.33 GHz
running a Linux operating system. It is indicated that the
required computation time per iteration became longer when
the particle number and computation dimension increased,
although differences in number were more distinctly re-
flected than differences in dimension. For example, the aver-
aged time per iteration using 50X 10° particles on a 128
X 128 computation grid was approximately 50 ms. The time
was approximately 206 ms on a 512 X 512 computation grid;
however, it increased to 981 ms when the particle number
became 1 X 10°. In addition, the differences of the time per
iteration among 128 X 128, 256 X 256, and 512X 512 com-
putation grids were becoming insignificant when the particle
number increased from 50X 103 to 1 X 10°. This is probably
because the repainting of particle positions for a very large
number of particles, say 1 X 10°, dominated the overall com-
putation time as compared to the calculation of resultant
forces and particle positions.

B. Comparisons between equilibrium conditions

In order to understand the effect of vy on the electrostatic
equilibrium properties, the differences of electric field and
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FIG. 9. (Color online) Comparison of the normalized electric field and potential distributions for an isolated conductor with a circular
cross section in a 512 X 512 computation grid using 1 X 10° particles between different 7y values. Distributions of the normalized electric field
and potential using y=0.01% are shown in (a) and (c), respectively. (b) and (d) show plots of the normalized electric field and potential
profiles through the center along the x axis in (a) and (c), respectively. The (black) dash-dotted curve represents y=1%, the (red) dashed

curve y=0.1%, and the (blue) solid curve y=0.01%.

potential distributions between different y values equal to
1%, 0.1%, and 0.01% were studied for various isolated con-
ductors. Table III summarizes the percentage differences of
|E| and @ for different y values for isolated conductors with
circular and square cross sections on 128 X 128, 256 X 256,
and 512 X 512 computation grids, respectively. The intention
was to understand the degree of accuracy using larger values
of vy, say 1% and 0.1%, with respect to y=0.01%. As shown
in Table III, the differences in both |[E| and ® between y
=1% and 0.01% were very large in comparison with the
differences between y=0.1% and 0.01% in all illustrations.
This is in agreement with the theory described in Sec. II H
that a larger value of 7y tends to cause a larger deviation of
the equilibrium properties from the ideal state of electrostatic

equilibrium. In addition, it shows that the differences in both
|E| and ® were getting larger when the size of the computa-
tion domain increased. For example, the percentage differ-
ences of |[E| between y=1% and 0.01% were approximately
1.60%, 3.93%, and 5.11% for computation dimensions equal
to 128 X 128, 256 X 256, and 512 X 512, respectively. This is
due to the fact that the particles required more iterations to
reach the simulated conductor surface in a larger computa-
tion grid, say 512X 512, since the particles were initialized
in the same region with radius equal to eight grids for all
experiments. Consequently, there were more particles resid-
ing in the conductor which resulted in larger differences on a
512 X 512 computation grid before the state of y=0.01% was
achieved.
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TABLE III. Percentage differences of electric field |E| and potential ® distributions between different y values for circular and square
cross section conductors in electrostatic equilibrium. Analyses were based upon the differences of y=0.01% from y=1% and 0.1% for all
conductor shapes and computation dimensions using 1 X 10° particles. Values given are means+standard deviation.

Circle Square
Dimension v (%) [E| (%) D (%) [E| (%) D (%)
128 X128 1-0.01 1.602 =2.408 -3.560*0.595 2796 =1.178 -4.782+0.828
0.1-0.01 0.111+0.284 —-0.201+0.084 0.047£0.194 —-0.596 = 0.085
256 X 256 1-0.01 3.928 £5.098 -7.061 =1.084 9.265£2.264 -9.270+1.788
0.1-0.01 0.380 £ 0.604 -0.949+0.177 0.427+0.393 —-1.588+0.220
512X512 1-0.01 5.110£6.184 -8.758+1.295 14.478 £2.865 -11.324%=2.173
0.1-0.01 0.636 =0.794 -1.381+0.234 0.455%0.362 -2.032+0.275
0.01%
100 :
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FIG. 10. (Color online) Comparison of the normalized electric field and potential distributions for an isolated square conductor in a
512X 512 computation grid using 1 X 10° particles between different y values. Distributions of the normalized electric field and potential
using y=0.01% are shown in (a) and (c), respectively. (b) and (d) show the plots of the normalized electric field and potential profiles
through the center along the x axis in (a) and (c), respectively. The (black) dash-dotted curve represents y=1%, the (red) dashed curve y
=0.1%, and the (blue) solid curve y=0.01%.

056704-10



COMPUTER SIMULATIONS OF ISOLATED CONDUCTORS...

For a better understanding of the electrostatic equilibrium
properties with respect to different y values, the electric field
and potential distributions in a 512X 512 computation grid
using 1 X 10% particles are shown in Figs. 9 and 10 for con-
ductors with a circular and a square cross section, respec-
tively. As consistent with the characteristics of isolated con-
ductors in electrostatic equilibrium (see Table I), the electric
field anywhere inside the conductor was zero and the surface
of the conductor was at the same potential, using y=0.01%
as illustrated in panels (a) and (c) of Figs. 9 and 10, respec-
tively. Herein, we have normalized the electric field and po-
tential distributions to a map with values between 0 and 100
in all illustrations, unless stated otherwise. We found that this
normalization was appropriate and advantageous for better

500k

100

-100 -50 0 50

(a)

100

500k
100

-100  -50 0 50 100

()
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interpreting the equilibrium properties, regardless of the ab-
solute values.

Figures 9(b) and 10(b) depict the electric field profiles
through the center along the x axis using y=1%, 0.1%, and
0.01% for circular and square conductors, respectively. A
good agreement was achieved using y=0.01% in that the
electric field inside the conductor was pretty uniform and
nearly zero. For y=1% and 0.1%, there still were a consid-
erable number of particles residing in the conductor which
resulted in inhomogeneous and nonzero electric fields inside.
The influence on the electric potential distributions due to
these particles can also be realized by plotting the profiles of
@ through the center along the x axis for each simulation as
depicted in Figs. 9(d) and 10(d). The profiles using y=1%

500k

100

-100 -50 0 50 100

500k
100

-100

-50 0 50

(d)

100

FIG. 11. (Color online) Computer simulations of the normalized electric field and potential distributions for isolated conductors with
elliptical and triangular cross sections in a 256 X 256 computation grid using 500 X 10? particles with y=0.01%. (a) and (b) Distributions of
the normalized electric field and potential with an elliptical cross section, respectively. (c) and (d) Distributions of the normalized electric
field and potential with a triangular cross section, respectively. Simulation results of using different particle numbers were quite similar as

summarized in Table V.
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TABLE 1V. Percentage differences of electric field |E| and po-
tential & distributions for various conductors in electrostatic equi-
librium between different y values using 50X 10° particles in a
128 X 128 computation grid. Analyses were based upon the differ-
ences of y=1% and 0.1% from y=0.01% for all conductors. Values
given are means+standard deviation.

v (%)
Shape Property 1-0.01 0.1-0.01
Circle |E| (%) 0.724+1.128 0.083+0.209
D (%) -1.735+0.306 —0.006 = 0.056
Ellipse |E| (%) 0.240*+0.613 0.009+0.195
D (%) -0.761*=0.181 —-0.018+0.043
Square |E| (%) 0.981+0.721 0.033+0.082
D (%) —2.587+0.392 —-0.184+0.027
Triangle |E| (%) 0.473+£0.463 —-0.087+0.232
P (%) -0.251+0.441 0.066 +=0.101

and 0.1% were normalized based upon the profile of y
=0.01% with a maximum value equal to 100. Pretty good
simulation results using y=0.01% were obtained in that the
conductor surface was an equipotential surface. In accor-
dance with the electric field distributions, the bulges inside
the conductors were due to the residual particles when 7y
=1% and 0.1%. Additional simulations for studying the elec-
trostatic equilibrium properties between different y values
were carried out using 50X 103 particles in various conduc-
tor geometries including circular, elliptical, square, and tri-
angular cross sections in a 128 X 128 computation grid. Once
again the percentage differences in both |E| and @ distribu-
tions between y=1% and 0.01% were considerably larger
than the differences between y=0.1% and 0.01% for each
conductor geometry, as summarized in Table I'V.

C. Comparisons between particle numbers

For completeness, the effect of using different numbers of
particles on the electrostatic equilibrium properties was stud-
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ied. Comparisons were made using 50 X 10%, 500 X 10°, and
1 X 10% particles with different conductor geometries includ-
ing circular, elliptical, square, and triangular cross sections
on a 256 X256 computation grid. As presented in Table V,
there was no significant difference in terms of |E| and ®
distributions between the use of different particle numbers
for each conductor geometry when the equilibrium condition
was achieved with y=0.01%. This can be realized by esti-
mating the particle density along the perimeter of the simu-
lated conductor surface. For example, the number of par-
ticles in one pixel was approximately 124 when the
equilibrium was achieved when simulating a circular con-
ductor using 50 X 103 particles. This amount of particle den-
sity was sufficient for establishing accurate equilibrium prop-
erties regarding the electric field and potential. When the
number of particles grew to 500X 10° and 1 X 10°, the par-
ticle density accordingly increased 10 and 20 times, respec-
tively. Although the intensity of |E| and & was increased,
their normalized distributions were approximately the same.
Consequently the equilibrium field and potential distribu-
tions were not sensitive to the particle number in the range
from 50X 103 to 1 X 10°. In Fig. 11, we illustrate the normal-
ized electric field and potential distributions for elliptical and
triangular conductors using 500X 10° particles. This is in
agreement with the electrostatic equilibrium characteristics
that the magnitude of the electric field was proportional to
the surface curvature and the corresponding conductor sur-
face was an equipotential.

D. Analyses of equilibrium properties

Until now we have confined ourselves to comparing the
characteristics of electrostatic equilibrium between different
parameter settings. To more thoroughly understand the equi-
librium properties with y=0.01%, we conducted a number of
experiments using 500 X 10* particles in simulated conduc-
tors with various geometries on a 256X 256 computation
grid. Figure 12 illustrates the vector representation of the
electric field superimposed on the magnitude map for circu-
lar, elliptical, square, and triangular cross section conductors.
Note that the figures are shown in a reduced dimension (33

TABLE V. Percentage differences of electric field |E| and potential & distributions for various conductors
in electrostatic equilibrium with y=0.01% between different particle numbers in a 256 X 256 computation

grid. Values given are means+ standard deviation.

Particle number

Shape Property 50X 103-500 % 103 500X 103-1 X 10° 1X10%-50 % 103
Circle [E| (%) —0.003 +0.007 —0.009 +0.127 0.012+0.123
® (%) —0.000=0.001 -0.022+0.034 0.022+0.033
Ellipse [E| (%) 0.000 * 0.004 0.005 +0.059 -0.005 +0.056
® (%) —0.001 +0.001 —0.003+0.017 0.004+0.016
Square [E| (%) —0.003 +0.006 —0.019+0.026 0.022+0.027
® (%) 0.006 +0.001 0.098 +0.014 -0.104+0.014
Triangle [E| (%) 0.001 +0.005 0.001 +0.026 —0.002+0.027
O (%) —0.004 +0.002 —0.006+0.013 0.010+0.015
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FIG. 12. (Color online) Computer simulation results of electric fields for isolated conductors in electrostatic equilibrium with y
=0.01% in a 256 X256 computation grid using 500X 10% particles. The figures are shown in a reduced dimension (33X 33) for better
representation. (a) Circular, (b) elliptical, (c) square, and (d) triangular cross section.

X 33) for better visualization. As consistent with the equilib-
rium characteristics, the electric field just outside the conduc-
tor boundary was perpendicular to the boundary, with a mag-
nitude proportional to the local charge density at that point.
The isocontours of the corresponding electric potential dis-
tributions are shown in Fig. 13, which indicates a good
agreement with the equilibrium properties.

E. Evolutions of charge distributions

Snapshots of the charge density evolutions at different
stages for the simulations in Fig. 12 with circular and square
cross section conductors are illustrated in Figs. 14 and 15,
respectively. Starting from a small circle with radius equal to
eight grids at the center of the simulated conductor, the par-
ticles uniformly advanced outward due to the repulsive force
between them. The charge distribution was somewhat uni-
form inside the region occupied by the particles before they
arrived at the boundary (surface) of the simulated conductor.
After the particles hit the conductor boundary, the particles
started to redistribute their charge toward a new state for

minimizing the electrostatic energy. Finally, the particles
reached an equilibrium charge distribution in response to the
conductor geometry in that the charge density was greatest
where the curvature was largest as shown in the last snap-
shot of each figure. This is in agreement with the equilib-
rium characteristics, though there were very few particles
(~0.01%) in the interior of the conductors, which is prob-
ably due to the modification of particle motion with each
initial velocity equal to zero in the simulation.

IV. CONCLUSIONS

A computer simulation model was developed and estab-
lished to study the unique characteristics of isolated conduc-
tors in electrostatic equilibrium. A wide variety of parameter
settings in terms of conductor geometry, simulation dimen-
sion, particle number, time interval, and equilibrium condi-
tion were used to evaluate the quality of the equilibrium
properties. The influence of different time interval settings on
the equilibrium properties was negligible (<0.01%) pro-
vided that the simulation was stable and convergent. The
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FIG. 13. (Color online) Isocontours of electric potential distri-
butions for the isolated conductors in electrostatic equilibrium in
Fig. 12. (a) Circular, (b) elliptical, (c) square, and (d) triangular
cross section.

differences of electrostatic equilibrium properties in terms of
|E| and @ distributions among various particle numbers of
50 % 10°, 500X 10°, and 1X 10° were also insignificant, as
presented in Table V.

Electrostatic equilibrium characteristics based upon the
setting of the equilibrium condition y were investigated us-

(d) () (f)

FIG. 14. (Color online) Evolution of charge density distributions
for an isolated conductor with a circular cross section in a 256
X 256 computation grid using 500 X 103 particles. (a) Initial charge
density distribution. (b) Iteration 3. (c) Iteration 12. (d) Iteration 25.
(e) Tteration 35. (f) Final charge density distribution with 7y
=0.01%.
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(d) (e) ()

FIG. 15. (Color online) Evolution of charge density distributions
for an isolated square conductor in a 256 X256 computation grid
using 500 X 107 particles. (a) Initial charge density distribution. (b)
Iteration 10. (c) Iteration 25. (d) Iteration 35. (e) Iteration 65. (f)
Final charge density distribution with y=0.01%.

ing three different values equal to 1%, 0.1%, and 0.01%. As
illustrated in Figs. 9 and 10, the equilibrium field and poten-
tial distributions achieved using y=1% were notably inaccu-
rate. More accurate simulation results regarding equilibrium
properties were obtained using stricter equilibrium condi-
tions, say y=0.1% and 0.01%. Although very accurate equi-
librium properties were achieved using y=0.01%, the aver-
age computation time was much longer than that required
using y=0.1% (~ six times) and y=1% (~20 times), de-
pending on the situation.

Rather than to try to establish an ideal model for achiev-
ing the real state of electrostatic equilibrium in that all
charged particles reside entirely on the conductor surface,
this paper aimed to investigate the equilibrium properties
based upon the value of . Poor approximations of the equi-
librium properties using y=1% can be realized by consider-
ing the influence of this 1% of particles on the charge density
distribution when an equilibrium is achieved. For example,
the number of this 1% of particles is 10X 10° using 1 10°
particles for simulations. It is these 10X 103 particles that
generate undesired electric fields and potential and deterio-
rate the overall distributions. On the other hand, this model
could be modified to investigate the electrostatic interactions
between charged membranes, polyelectrolytes, and cells and
to study electrostatic deformable devices using microma-
chining techniques.

In summary, we have proposed a computer simulation
model to investigate the electrostatic equilibrium properties
of isolated conductors based upon a wide variety of param-
eters. As consistent with the theory of electrostatics and
charged conductors, we found that the particles moved in
response to the conductor geometry in such a way that the
electrostatic energy was minimized. The experimental results
indicate that the setting of the equilibrium condition 7y plays
an important role in achieving successful simulations. It was
shown that accurate simulation results were obtained using a
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strict value of vy, say y=0.01%. The equilibrium properties
regarding charge, electric field, and potential distributions
were demonstrated using a variety of examples. The estab-
lishment of this simulation model is advantageous for under-
standing the unique electric field and potential properties of
isolated conductors in electrostatic equilibrium and develop-
ing the applications of electrostatic systems, e.g., plasma ra-
diation shield and ferroelectric nanorods. For more realistic

PHYSICAL REVIEW E 78, 056704 (2008)

system design, future research is needed to extend this model
to simulate equilibrium properties of three-dimensional de-
vices.
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